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IT IS USUAL, when investigating the distribution of velocity 
and its relation to shear stress in non-isothermal turbulent 
flow through pipes or channels, either to neglect the 
influence of a temperature gradient or to consider only 
its effect on the regions near the heated boundaries. This 
is reasonable since the highest temperature gradients 
normally occur here; moreover fluid viscosity, which is 
usually strongly temperature dependent, plays a more 
important role in these regions than in the turbulent core. 

In recent years nuclear engineers have had to deal with 
turbulent flow and heat transfer in ducts of various 
shapes, including annulii and channels containing bundles 
of rods. In such multiply-connected shapes, containing 
perhaps elements having roughened or extended surfaces, 
it is important to be able to isolate the contribution of an 
individual element to the overall heat transfer and 
pressure drop. A way of doing so involves locating the 
position of the “surface of zero shear” which surrounds 
the element in question [I]. In dealing with simple shapes 
it is assumed that zero shear occurs at the section where 
the mean velocity is a maximum, on the basis that the 
shear stress is proportional to cm dU/dy where E~ is the 
usual “eddy viscosity”, #is the mean velocity and y is an 
appropriate co-ordinate normal to 0. With real fluids, 
however, and especially with gases, the existence of a 
transverse temperature gradient implies a transverse 
density gradient; the validity of the technique therefore 
needs investigation. 

If a Reynolds-type substitution is made in the Navier- 
Stokes equations for steady compressible flow of a fluid 
having a constant viscosity, and time-averages are taken, 
one obtains: 

where Of, p, ui and p are the steady and fluctuating 
components of velocity and density respectively and 
P is the steady component of the static pressure. 
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We assume that the fluid behaves as a perfect gas, 
having an equation of state 

P+d=RCP+p)(T’+B) (2) 

where T and 0 are the steady and fluctuating components 
of absolute temperature. We further assume that 6 is 
negligible, i.e. that density changes resulting from an 
imposed temperature gradient occur at constant pressure. 
Then equation (2) yields 

@I &I-= Fe- se (3) 

In most practical situations T > 300°K. Accurate data 
on 6 in the core of turbulent pipe flow do not appear to 
exist. We should expect, however, by analogy with 
corresponding velocity fluctuations that, with the usual 
magnitude of temperature differences in engineering 
equipment, 0 would be of the order of 10% We therefore 
assume that $ < PT. Since $ < $ we neglect the 
right-hand side of equation (3) and write 

pet pT=o (4) 

Using equation (4), the last term, equation (1) can be 
transformed into 

Consider now the case of steady flow in the Ox 
direction between infinite parallel plates perpendicular to 
Oy. Assume that a steady temperature gradient exists 
in the Oy direction and that dp/dx is a constant which is 
small enough to permit the neglect of density changes 
in the Ox direction. Then, associating 0, ‘7, p, u, u, w 
with the steady and fluctuating velocity components in 
the x, y, z direction respectively we have 

0 = 0(y), ‘v’= F= 0, T= F(y) 

and all the averages of fluctuations are functions of y 
only. If we neglect the last term in equation (5) ‘(the 
triple correlation), the i-component of equation (1) 
becomes 

857 



858 SHORTER COMMUNICATION 

where we have defined diffusivities in the conventional 
way by: 

The iast term in equation (6) gives the c~~ntribution of 
turbulence to the shear stress and the last part of this 
term represents the extra effect of the density gradient 
associated with heat transfer. If, as usual, we neglect the 
molecular contribution to shear in the core of the channel, 
the surface of zero shear occurs where 

(f-9 

The practical use of this condition requires that Lsi, i;, 

&w be known. However, if we make the approxrmation 
~ En, - fh , equation (8) reduces to the very simple form: 

This equation can also be derived from semi-empirical 
mixing theories, but the nature of the assumptions made 
is not so easy to interpret as in the present derivation. 

According to equation (9) the position of zero shear 
occurs where d/dy (u/p) = 0 and not where dn/dy =. 0 
as is usually assumed. In most practical applications of 
the zero shear surface technique, i” = 5OO’K. Typical 
temperature differences between the gas and heated 
surface seldom exceed a few tens of degrees centigrade, 
and most of this difference occurs near the surface. Thus, 
over the region where dU/dy is small, T normally \aries 
much less than 1 per cent. The resulting change m the 
position of zero shear might well not be sign&cant com- 
pared with the experimental errors involved. 
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